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Abstract

A special case of a conjecture attributed to Artin states that any system of
two homogeneous diagonal forms of degree k with integer coefficients should
have nontrivial zeros over any p-adic field Qp provided only that the number
of variables is at least 2k2 + 1. In this article, we prove that the conjecture
is true when k = 6.
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1. Introduction

A special case of a conjecture commonly attributed to Emil Artin states
that any system of equations

a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s = 0

b1x
k
1 + b2x

k
2 + · · ·+ bsx

k
s = 0,

where the ai and bi are integers, should have nontrivial solutions in every
p-adic field Qp provided only that s ≥ 2k2 + 1, where “nontrivial” simply
means that at least one of the variables should be different from zero. In
many cases, this is known to be true. As part of their pioneering work on
this and similar problems, Davenport & Lewis [1] showed that the conjecture
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is true when k is an odd integer, but only that 7k3 variables suffice when k
is even. Some years later, Brüdern & Godinho [2] proved that the conjecture
is true for most even exponents, leaving only the cases where k = pτ (p− 1)
with τ ≥ 1 and where k = 3 · 2τ as possible exceptions. Even in these
exceptional cases, it is known that the system must always have nontrivial
q-adic solutions for a prime q unless either q = p in the first case or q = 2
in the second case. We note that k = 6 is the only degree to fall into both
classes of exceptions. It is our goal in this paper to prove that the conjecture
holds when k = 6. That is, we will prove the following theorem.

Theorem 1. Suppose that a1, . . . , as, b1, . . . , bs ∈ Z. If s ≥ 73, then the
system of equations

a1x
6
1 + a2x

6
2 + · · ·+ asx

6
s = 0

b1x
6
1 + b2x

6
2 + · · ·+ bsx

6
s = 0

(1)

has nontrivial solutions in each p-adic field Qp.

According to the aforementioned results of Brüdern & Godinho, the the-
orem is true for all primes p > 3, so our proof focuses on the primes 2 and 3.
Our goal is to find a nonsingular solution of the system (1) modulo a suitable
power of p, and then lift this to a p-adic solution using Hensel’s Lemma. Our
primary technique is the method of contractions, which essentially involves
building up solutions of congruences one power of p at a time. We improve on
previous work by combining this technique with both the colored variables
technology developed by Brüdern and Godinho and the theory of zero-sum
sequences in groups. We also improve on previous work in that frequently,
in order to make our contractions, we consider the coefficients of variables
modulo p2 (or even modulo p3) instead of only modulo p, which has been
typical previously.

In Section 2 of this article, we present various preliminary lemmas which
apply for all (or almost all) values of p. Then Section 3 will deal with 2-adic
solubility, and Section 4 will treat the 3-adic case. For both p = 2 and p = 3
separately, we prove various propositions which will only be used for that
particular value of p, and these will be included in Section 3 and Section 4
respectively, instead of in the more general Section 2.
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2. Preliminaries

In this section, we record a few definitions and preliminary results that
we need in our proof. The lemmata in this section will be applied to both the
primes 2 and 3 in the following sections. Preliminaries that only apply to one
of these primes will be presented in the section devoted to that prime. Our
first lemma is a consequence of the two main theorems of [2]. This lemma
implies that we only need to consider the primes 2 and 3 in our investigations.

Lemma 1 (Brüdern & Godinho). Fix a prime number p and suppose
that the coefficients ai, bi, 1 ≤ i ≤ s in the equation (1) are all ordinary
integers. If s ≥ 2k2 +1 and neither of the exceptional conditions below occur,
then the equation (1) is guaranteed to have nontrivial solutions in Qp:

• k = pτ (p− 1) for some τ ≥ 1

• p = 2 and k = 3 · 2τ for some τ ≥ 1.

Our next lemma is a combination of several results in [1], specialized to
degree 6. This allows us to assume that our system of equations has cer-
tain special properties. In this lemma, the phrase “we may assume” means
that if all systems of equations with these properties have nontrivial p-adic
solutions, then all systems without these properties must have nontrivial
solutions as well. Therefore, we are free to make these assumptions about
the system, and do so from this point onward unless otherwise specified. A
system satisfying the properties of this lemma will be said to be p-normalized.

Lemma 2. Consider a system of equations

f = a1x
6
1 + · · ·+ asx

6
s = 0

g = b1x
6
1 + · · ·+ bsx

6
s = 0,

(2)

where all of the coefficients are integers, and fix a prime number p. We may
rewrite the polynomials f and g as

f =
5∑
j=0

pjfj, g =
5∑
j=0

pjgj,

where for each j, the functions fj and gj are additive forms with integer
coefficients, and for each variable involved in the pair fj, gj, the coefficient
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of this variable in at least one of the forms is not divisible by p. For each
j, let mj represent the total number of variables involved in the pair fj, gj,
and let qj represent the minimal number of variables in any nontrivial linear
combination of these forms. Then we may assume that for 0 ≤ j ≤ 5, we
have

m0 + . . .+mj ≥
(j + 1)s

6
and m0 + · · ·+mj−1 + qj ≥

(2j + 1)s

12
.

Moreover, we may assume that g0 contains exactly q0 variables with coeffi-
cients not divisible by p, and that if t represents the number of variables in
g0 with coefficients divisible by p2, then we have

m0 + u(g1)− s/k ≥ t ≥ (m0 − q0)/p,

where u(g1) represents the number of variables in g1 whose coefficients are
nonzero modulo p.

As mentioned in the introduction, our strategy is to solve our system
modulo a power of p and then use Hensel’s Lemma to obtain p-adic solutions.
The following version of Hensel’s Lemma is standard for this.

Lemma 3. Consider the system (1). Fix a prime p, and write k = pτk0,
where (p, k0) = 1. Define the number γ = γ(k, p) by

γ =

{
τ + 2 if p = 2 and τ > 0
τ + 1 otherwise.

Suppose that we can find a solution to the system modulo pγ such that there
exist indices i, j such that

(aibj − ajbi)xixj 6≡ 0 (mod p). (3)

Then this solution of congruences lifts to a p-adic solution of (1).

Our primary method in the proofs is the technique of contractions devel-
oped by Davenport & Lewis. We now briefly sketch the ideas and terminology
involved. We say that a variable y in our system is at level j if it is a variable
in the pair fj, gj in Lemma 2. Suppose that we have variables y1, . . . , yn at
level l, and that y = ξ is a solution of the system

n∑
i=1

aiy
6
i ≡

n∑
i=1

biy
6
i ≡ 0 (mod pl)
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in which ξi 6≡ 0 (mod p) for each i. With this solution, we may define a
new variable Y by setting y1 = ξ1Y, . . . , yn = ξnY . If Y is a variable at
level m, we call this a contraction of variables at level l to a variable at level
m. In this definition, if l = 0 and in the solution of congruences modulo p,
there are indices i, j such that (aibj − ajbi)ξiξj 6≡ 0 (mod p), then we call
Y a primary variable at level m. Similarly, if Y was obtained by (perhaps
several) contractions of variables, and one of the variables involved in the
contractions is a primary variable, then Y is also said to be primary. If Y
is not a primary variable, then we call Y a secondary variable. Note that if
we can create a primary variable at level γ or higher, then by setting this
variable equal to 1, we obtain a solution of (1) modulo pγ which satisfies the
conditions of Lemma 3. Hence, if we can create a primary variable at level
at least γ, then we know that the system (1) has a nontrivial p-adic solution.

Let us note here one subtle point in our argument. If we have some vari-
ables at level l and are able to contract them to a primary variable, then
the worst-case scenario is always that the new variable is at level l+ 1. This
is because our goal is to construct primary variables at successively higher
levels. If our contraction yields a primary variable at a level higher than
l + 1, then that variable is already there without us having to construct it.
Thus, when we say that we can construct a primary variable at level l + 1,
we really mean that we can construct it at level l + 1 or higher, and it is
understood that if this variable is actually at a higher level, then the proof
of the theorem becomes simpler. Secondary variables, however, are needed
at a particular level in order to guarantee that they can be used to construct
primary variables. Thus, when we say that we construct a secondary variable
at level l+1, we must take care to ensure that this variable is at level exactly
l + 1.

In our proofs of both 2-adic and 3-adic solubility, we make great use of
the colored variables technology developed by Brüdern & Godinho, and so
we record here some of the basic ideas about colored variables. As before,
suppose that the prime p is fixed, and that xi is a variable in (1) at level l.
Then both of the coefficients ai and bi are divisible by pl, and at least one
coefficient is not divisible by pl+1. By the color of the variable xi, we mean
the ratio ai/bi, considered as an element modulo p, unless bi = 0 when we
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say that xi has color 0. Thus there are p+ 1 possible colors:

e0 =

(
1

0

)
, e1 =

(
1

1

)
, e2 =

(
2

1

)
, . . . , ep =

(p
1

)
=

(
0

1

)
.

For convenience later, we define the numbers ij, 1 ≤ j ≤ p to be the number
of variables at level 0 having color ej. If we have several variables at some
level, then we use the term palette to refer to the set of colors (including
multiplicity) of these variables.

At times, we will be interested in the vector of the values of the coefficients
of a variable instead of just the variable’s color. In this case, we will use curly
brackets and write this vector as

{
a
b

}
. Suppose that we have a sequence of

variables whose coefficient vectors are{
a1
b1

}
, . . . ,

{
an
bn

}
,

and such that
n∑
i=0

{
ai
bi

}
≡
{

0

0

}
(mod pl).

Then we say that this sequence is a zero-sum sequence modulo pl. If a subset
of these coefficient vectors sums to zero, then we call this subset a zero-sum
subsequence. Note that if we have a zero-sum sequence, then we can contract
these variables to a higher level. Note also that a variable Y at level l is
primary if and only if when we trace back the variables used in contractions
to create Y , we find that we have used two variables of different colors at
level 0. Usually, when we need the coefficient vector of a variable at level l,
we will only consider the vector of coefficients in fl and gl, suppressing the
implied factor of pl.

Our next lemma, due to Davenport & Lewis [1], gives us a lower bound
on the number of primary variables at level 1 which we are able to construct
through contractions.

Lemma 4. Let δ = (k, p− 1). If π1 represents the number of primary vari-
ables at level 1 which we can create by contracting variables at level 0, then
we have

π1 ≥ min

{⌊
m0

2δ + 1

⌋
,

⌊
q0

δ + 1

⌋}
.
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Moreover, in each of these contractions, we use at most δ+1 variables of the
majority color at level 0.

The following two lemmas give some more general information about
when we can contract variables to higher levels. The first of these is due to
Olson (see [3] and [4]), and the second is due to Godinho & de Souza Neto
[5].

Lemma 5 (Olson). Let p be a fixed prime, and suppose that S is a sequence
of variables at level l, having length n. Then

1. if n ≥ 2p− 1, then S has a zero-sum subsequence modulo pl+1;

2. if n ≥ 3p − 2, then S has a zero-sum subsequence modulo pl+1 having
length at most p.

Lemma 6 (Godinho & de Souza Neto). Let p be a fixed prime, and sup-
pose that S is a sequence of variables at level l.

1. If we have ij(S) ≥ p for some j, then for any element v of the sequence,
we can find a zero-sum subsequence modulo pl+1 of S which includes
the element v.

2. If p = 3 or p = 5, and we have ij(S) ≥ 2p − 1 for some j, then we
can find a zero-sum subsequence modulo pl+1 which is not a zero-sum
sequence modulo pl+2, and which has length at most p.

At times in our proof, we will make some contractions and then be in-
terested in the remaining numbers of variables at a given level. In these
situations, we use notation with primes to denote the new numbers of vari-
ables. For example, if we contract some variables from level 0 to level 1, then
we will denote the number of remaining variables at level 0 by m′0 and the
new number of variables with color 0 as i′0. We also note that all of our the-
orems about contractions (and in particular Lemma 4) still apply when the
variables in the lemma are replaced by their corresponding primed variables.

Our final lemma in this section is an extension of a result due to Bovey [6],
which gives us a condition under which we can guarantee that we can solve
congruences modulo powers of primes. Although we only use this lemma for
the prime p = 3, we include it in this section since the result applies to any
prime. Although Bovey only states this result for p = 2, his proof extends to
any p with no extra work, and so we will not include a proof here.
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Lemma 7. Let n ∈ Z+, and suppose that for i = 0, . . . , n, we have Fi =∑vi
j=1 aijxij with all aij 6≡ 0 (mod p) and with

∑k−1
i=0 vi ≥ pk for each k =

1, . . . , n. Then for any positive integer N > n, the form
∑n

i=0 p
iFi represents

at least min{
∑n

i=0 vi, p
n} different residue classes (mod pn), where the xij ∈

{0, 1} and at least one x0j = 1.

3. 2-Adic Solubility

In this section, we’ll show that the pair of forms (1) has nontrivial 2-adic
solutions whenever s ≥ 73. By the remarks after Lemma 3, we can prove
that the system (1) has a nontrivial 2-adic solution if we can construct a
primary variable at level 3. We begin with a few preliminary propositions.
In these propositions, we always assume that p = 2 and that we are working
2-adically.

Proposition 8. Suppose that there are two primary variables and one sec-
ondary variable at level l. Then we can create a primary variable at level (at
least) l + 1.

Proof. By Lemma 5, we can contract these variables to a new variable at
level (at least) l + 1. Since this contraction must use at least two variables,
it must involve a primary variable. Thus the resulting variable is primary.�

Proposition 9. Suppose that there are two secondary variables at level l of
different colors, and that there is also a primary variable at level l. Then we
can create a primary variable at level l + 1.

Proof. If the primary variable has the same color as one of the secondary
variables, then these two variables together form a zero-sum, which contracts
to a primary variable at level l+ 1. Otherwise, our set has three variables of
different colors, and these three variables form a zero-sum, which contracts
to a primary variable at level l + 1. �

Proposition 10. Suppose that there are three variables at level l of the same
color. Then it is possible to contract two of these variables to a new variable
at level exactly l + 1.
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Proof. Suppose without loss of generality that the three variables have
color

(
1
0

)
. Then the coefficient vector for each variable (ignoring the com-

mon factor of 2l) must either be
{

1
0

}
or
{

3
0

}
, where the “numerator” of the

coefficient vector is being considered modulo 4, and the “denominator” is
being considered modulo 2. Since there are three variables, there must be
two with the same coefficient vectors. If we add these vectors together, we
see that the sum is zero modulo 2, but nonzero modulo 4. Hence these two
variables contract to a new variable at level exactly l + 1. �

Proposition 11. Suppose that there are five variables of the same color at
level l. Then it is possible to construct a variable of the same color at level
exactly l + 1. Moreover, we can do this using only two of the variables at
level l.

Proof. Without loss of generality, suppose that the variables have color
(
1
0

)
.

If we look at the coefficients of the variables modulo 4 (again ignoring the
common factor of 2l), there are four possibilities:

{
1
2

}
,
{

1
0

}
,
{

3
2

}
, and

{
3
0

}
.

Since there are five variables, two of them must have the same coefficient
vector modulo 4. If these two variables are contracted, the resulting variable
exists at exactly level l + 1, and its color will be

(
1
0

)
. �

Proposition 12. Suppose that there are three variables of the same color at
level l, and suppose that a color different than these is selected. Then it is
possible to use two of the variables to construct a new variable at level exactly
l + 1 which avoids the selected color.

Proof. As before, assume that the variables all have color
(
1
0

)
and consider

their coefficient vectors modulo 4. If two of them have the same coefficient
vector, then they contract to a variable of color

(
1
0

)
at level l+ 1, and we are

done. Otherwise, the variables all have different coefficient vectors modulo
4, and it is not hard to see that it will always be possible to obtain variables
of two different colors through contractions of two variables. One of these
will avoid the selected color. �

Now we are ready to begin the proof of our theorem when p = 2. We
assume that the forms in (1) are 2-normalized. By Lemma 2, we have

m0 ≥ 13

q0 ≥ 7

m0 +m1 ≥ 25

m0 + q1 ≥ 19.
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Note that by Lemma 4, along with the above inequalities, we can make at
least

π1 ≥ min
{⌊m0

3

⌋
,
⌊q0

2

⌋}
≥ 3 (4)

primary variables at level 1. We now prove that 2-adic solutions exist through
a series of lemmas, which together cover all of the possible values of the qi
and mi.

Lemma 13. If q2 6= 0, then we can construct a primary variable at level 3.

Proof. As noted in (4), we know that we can construct 3 primary variables
at level 1. Then by Lemma 5, we can contract them to obtain a primary
variable at level 2. Since q2 ≥ 1, there are secondary variables of at least two
different colors at level 2. Then Proposition 9 says that we can contract to
a primary variable at level 3. �

Lemma 14. If we have q1 ≥ 4, then we can construct a primary variable at
level 3.

Proof. Note that having q1 ≥ 4 implies that m1 ≥ 6. Without loss of
generality, assume that the most common color at level 1 is

(
1
0

)
, and that

the second-most common color is
(
0
1

)
. Then among the variables at level 1,

we can find a subset having one of the following palettes:(
1
0

) (
1
0

) (
0
1

) (
0
1

) (
1
1

) (
1
1

)
or

(
1
0

) (
1
0

) (
1
0

) (
0
1

) (
0
1

) (
1
1

)
or(

1
0

) (
1
0

) (
1
0

) (
0
1

) (
0
1

) (
0
1

)
.

Note that in any of the three possibilities, we can find three disjoint sets of
two variables such that the variables in each set have different colors. To
each of these sets, add one of the primary variables which can be created
by (4). Then Proposition 9 allows us to create a primary variable at level 2
from each set. Since there are three variables, there exists a zero-sum among
them, and this zero-sum contracts to a primary variable at level 3. �

After the results of Lemmas 13 and 14, we may make the assumptions
that q2 = 0 and q1 ≤ 3, and we do so throughout the remainder of this
section. Note that by Lemma 2, we can now assume that m0 ≥ 16 and
m0 +m1 ≥ 31.
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Lemma 15. Suppose that q0 ≥ 10. Then we can construct a primary vari-
able at level 3.

Proof. Note that if q0 ≥ 10, then with m0 ≥ 16, Lemma 4 says that π1 ≥ 5.
We now split the proof of this lemma into four cases.

Case A: m2 6= 0. After making 5 primary variables at level 1, we can use
Lemma 5 twice to contract them to 2 primary variables at level 2. Since
m2 6= 0, Proposition 8 allows us to contract to a primary variable at level 3.

Case B: m1 ≥ 6. As in the previous case, we can create two primary vari-
ables at level 2 without using any secondary variables from level 1. Now,
since we have both m1 ≥ 6 and q1 ≤ 3, there must be a color at level 1 hav-
ing at least three variables. By Proposition 10, we can contract two of these
variables to a secondary variable at level exactly 2. Then we use Proposition
8 as above to complete the proof.

Note that by the results in these two cases, we may assume that m2 = 0
and m1 ≤ 5, and we do so throughout the remainder of the proof. By Lem-
mas 2 and 4, this gives us m0 ≥ 32, m0+m1 ≥ 37, and π1 ≥ min{10, bq0/2c}.

Case C: q0 ≥ 14. In this case, we have π1 ≥ 7. After constructing these
variables, assume without loss of generality that the most common color
among them is

(
1
0

)
, and that the second-most common color is

(
0
1

)
. If these

variables have one of the palettes(
1

0

)(
1

0

)(
1

0

)(
0

1

)(
0

1

)(
0

1

)(
1

1

)
or

(
1

0

)(
1

0

)(
1

0

)(
1

0

)(
1

0

)(
0

1

)(
1

1

)
then we can find three disjoint sets of variables such that one set contains
three variables of different colors, and the other two sets each contain two
variables of the same color. Each of these sets contracts to a primary variable
at level 2. Examining each of the other six possible palettes, one can verify
that it is always possible to find three disjoint sets of variables, each contain-
ing two variables of the same color. As above, these can each be contracted
to a primary variable at level 2. Hence we can construct 3 primary variables
at level 2, and these can be contracted to a primary variable at level 3.
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Case D: 10 ≤ q0 ≤ 13. Now we have π1 ≥ 5. Because of the bound on q0,
we have I0 ≥ 32 − 13 = 19, where I0 represents the number of variables of
the majority color at level 0. As mentioned in Lemma 4, when we create the
five primary variables at level 1, we use at most 10 of the variables of this
color, leaving at least 9 remaining. By using Proposition 10 several times,
we can contract these variables to obtain four secondary variables at level 1.

Now we consider the primary variables at level 1. As usual, we may
assume that the color

(
1
0

)
appears the most and the color

(
0
1

)
appears the

second-most. If these five variables have one of the palettes(
1
0

) (
1
0

) (
0
1

) (
0
1

) (
1
1

)
or

(
1
0

) (
1
0

) (
1
0

) (
0
1

) (
0
1

)
or(

1
0

) (
1
0

) (
1
0

) (
1
0

) (
0
1

)
or

(
1
0

) (
1
0

) (
1
0

) (
1
0

) (
1
0

)
,

then we can contract to two primary variables at level 2, with one primary
variable remaining at level 1. If we have secondary variables of two different
colors at level 1, then we may use Proposition 9 to create a primary variable
at level 2. However, if all the secondary variables at level 1 are the same
color, then we can create a secondary variable at level 2 via Proposition 10.
In either case, we have three variables at level 2, at most one of which is sec-
ondary. Hence we can contract these to a variable at level 3 by Proposition
8, and this variable will be primary.

If the five primary variables at level 1 have the remaining possible palette(
1

0

)(
1

0

)(
1

0

)(
0

1

)(
1

1

)
,

then the above plan does not work, so we modify it as follows. First, using
two of the variables of color

(
1
0

)
, we construct a primary variable at level 2.

Then we have one primary variable of each possible color remaining at level
1. If the secondary variables have at least 2 different colors, then for each
of these colors, we can add one secondary variable to a primary variable of
the same color, and create a primary variable at level 2. This yields three
primary variables at level 2. If the secondary variables all have the same
color, then use Proposition 10 to create a secondary variable at level 2. Then
use one of the remaining secondary variables and the primary variable of
the same color to create a primary variable at level 2. Now we have two
primary variables and one secondary variable at level 2, and another appeal
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to Proposition 8 yields a primary variable at level 3. This completes the
proof of the lemma. �

Lemma 16. Suppose that 8 ≤ q0 ≤ 9. Then we can construct a primary
variable at level 3.

Proof. Note that with this bound on q0, Lemma 4 gives π1 ≥ 4. By
studying the possible colors of these variables, we see that (after making
our normal assumption about which colors are the largest), if the palette
does not look like either(

1

0

)(
1

0

)(
0

1

)(
1

1

)
or

(
1

0

)(
1

0

)(
1

0

)(
0

1

)
,

then we can use these variables to make two primary variables at level 2. We
now split the proof into cases.

Case A: m1 ≥ 6. If we can use the primary variables at level 1 to construct
two primary variables at level 2, then we can finish the proof as in Lemma
15. Otherwise, begin by using two of the primary variables of color

(
1
0

)
to

create a primary variable at level 2. Next, since we have m1 ≥ 6 and q1 ≤ 3,
there must be at least three secondary variables of the same color at level 1.
By Proposition 10, we can use two of them to create a secondary variable at
level exactly 2. Finally, we have two primary variables and at least 1 sec-
ondary variable remaining at level 1. Using Proposition 8, we can contract
these to a primary variable at level 2. This yields two primary variables and
one secondary variable at level 2, and another appeal to Proposition 8 gives
us the desired primary variable.

Case B: m2 6= 0. Again, if we can use the primary variables at level 1
to construct two primary variables at level 2, then we can finish the proof
as in Lemma 15. Otherwise, note that in light of Case A, we may assume
that m1 ≤ 5. From this assumption, Lemma 2 gives us m0 ≥ 20, and hence
I0 ≥ 11. At most 8 of these variables are used in creating the primary vari-
ables at level 1, leaving at least 3 remaining. By Proposition 10, we can
contract two of these to a secondary variable at level 1. Now, we can con-
tract the primary variables of the same color to a primary variable at level
2, leaving us two primary variables and one secondary variable at level 1.
By Proposition 8, these variables can be contracted to a primary variable
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at level 2. We now have two primary variables and one secondary variable
at level 2, and once again, Proposition 8 gives us a primary variable at level 3.

Case C: m1 ≤ 5 and m2 = 0. In this case, our conditions guarantee that
we have m0 ≥ 32, and I0 ≥ 32− 9 = 23. We need to use 8 of these in order
to construct the four primary variables at level 1, leaving us with at least
15 remaining. By Proposition 10, we can use them to construct 7 secondary
variables at level 1. At least three of these variables must have the same
color, so we can contract two of them to a secondary variable at level 2 by
Proposition 10. Next, as in the previous case, if we can use the primary
variables to construct two primary variables at level 2, then we are done as
above. If not, we can contract the two primary variables of the same color
to a primary variable at level 2. Then we have two primary variables and a
secondary variable left at level 1, and Proposition 8 yields a primary variable
at level 2. As before, we now have two primary variables and one secondary
variable at level 2, and another appeal to Proposition 8 completes the proof
of this case. This completes the proof of this lemma. �

Lemma 17. Suppose that q0 = 7, 1 ≤ q1 ≤ 3, and q2 = 0. Then we can
construct a primary variable at level 3.

Proof. By Lemmas 2 and 4, we have m0 ≥ 16, m0+m1 ≥ 31, I0 ≥ 16−7 =
9, and π1 ≥ 3. Making our usual assumption about the majority colors at
level 1, the palette of primary variables at this level is(

1

0

)(
1

0

)(
1

0

)
or

(
1

0

)(
1

0

)(
0

1

)
or

(
1

0

)(
0

1

)(
1

1

)
.

Since q1 6= 0, we have secondary variables of at least two different colors at
level 1. It is easy to check that whichever colors they are, and whichever
palette of primary variables we have, we can contract these variables to form
two primary variables at level 2. Next, we point out that if either m2 6= 0 or
m1 ≥ 6, then we can obtain a primary variable at level 3 in the same manner
as in Lemma 15. Thus we may assume that m2 = 0 and m1 ≤ 5. In that
case we know from Lemma 2 that m0 ≥ 32 and hence I0 ≥ 25. We used at
most 6 of the variables counted by I0 to produce the primary variables at
level 1, leaving at least 19 more. We can then use Proposition 10 to produce
9 secondary variables at level 1. Some three of these must all have the same
color, and hence we can use Proposition 10 again to produce a secondary
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variable at level 2. Proposition 8 now provides us with a primary variable at
level 3. �

Combining the results of the previous five lemmas, and trivially using
Lemmas 2 and 4, we have the following lemma. Throughout the rest of this
section, we will assume that all of the bounds in this lemma hold without
explicitly stating that fact.

Lemma 18. Suppose that (1) is a 2-normalized system. In order to prove
that this system has nontrivial 2-adic solutions, we may assume that q0 = 7,
q1 = q2 = 0, m0 ≥ 19, m0 + m1 ≥ 31, m0 + m1 + m2 ≥ 37, and I0 ≥ 12.
Moreover, we can assume that π1 ≥ 3, and that to make these variables uses
at most 6 of the variables counted by I0. Hence, after forming these primary
variables, we still have a color at level 0 containing at least 6 variables.

Lemma 19. Suppose that we have m1 + m2 ≤ 1. Then we can construct a
primary variable at level 3.

Proof. By Lemma 18, our hypothesis implies that m0 ≥ 36. Assume with-
out loss of generality that

(
1
0

)
is the color at level 0 with the most elements,

and divide these elements into four groups depending on whether their coef-
ficients modulo 8 have vectors

{∗
0

}
,
{∗

2

}
,
{∗

4

}
, or

{∗
6

}
, where each asterisk

can represent any odd number. Without loss of generality, assume that the
coefficient vector appearing the most is

{∗
0

}
. Since i0 ≥ 29, we see by the

pigeonhole principle that there are at least 8 variables with this coefficient.
Moreover, since m0 + u(g1)− 13 ≥ t and there are only 7 variables not hav-
ing color

(
1
0

)
, there must exist variables at level 0 having color

(
1
0

)
, but not

having coefficient
{∗

0

}
modulo 4, and hence not

{∗
0

}
modulo 8 either. Our

system of equations modulo 8 now looks like

a1x
6
1 + · · ·+ aMx

6
M +b1y

6
1 + · · ·+ bNy

6
N +c1z

6
1 + · · ·+ c7z

6
7 ≡ 0

d1y
6
1 + · · ·+ dNy

6
N +e1z

6
1 + · · ·+ e7z

6
7 ≡ 0.

(5)

Here, M ≥ 8, N ≥ 1, the variables x have coefficients
{∗

0

}
modulo 8, the

variables y have coefficients
{∗

2

}
,
{∗

4

}
, or

{∗
6

}
modulo 8, and each coefficient

ei is nonzero modulo 2. Moreover, since M ≥ 8, Lemma 7 implies that we
can solve the equation f(x) ≡ A (mod 8) nontrivially for any residue A.
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Now, consider the 7 variables z, and add to these the variable y1. Since
there are 8 variables, Lemma 7 allows us to nontrivially solve the equation
g(y1, z) ≡ 0 (mod 8). Note that this solution must use at least one variable
whose color is not

(
1
0

)
modulo 2. Suppose that these variables yield f(y1, z) ≡

−A (mod 8). Then we may solve the congruence f(x) ≡ A (mod 8). Then
the vector (x, y1, 0, . . . , 0, z) is a nonsingular solution of the system modulo
8, which lifts to a nontrivial solution in Z2 by Lemma 3. �

Lemma 20. Suppose that m1 + m2 ≥ 2, that the majority color at level 0
is
(
1
0

)
(this assumption being implicit in the results of Lemma 2), and that

either the variables at level 1 also have color
(
1
0

)
or we have m1 = 0. Then

we can construct a primary variable at level 3.

Proof. We know from Lemma 4 and the bounds in Lemma 18 that π1 ≥ 3.
Our first task in this proof is to show that we can assume that at least one
of these variables we can create has color

(
1
0

)
. Let t represent the number

of variables at level 0 which have coefficients
{∗

0

}
modulo 4, where ∗ can

represent any odd number. Since the hypotheses give u(g1) = 0, Lemma 2
shows that we have t ≤ I0− 6 and t ≥ 6, where I0 is the number of variables
of color

(
1
0

)
at level 0. This implies that of the variables counted by I0, at

least 6 have coefficient
{∗

0

}
modulo 4, and at least 6 have coefficient

{∗
2

}
modulo 4. Now, since q0 ≥ 7, we can find two variables (say v1, v2) counted
by q0 which have the same color. Adding these variables together, we see
that v1 + v2 can have any of the coefficient vectors

{
0
0

}
,
{

2
0

}
,
{

0
2

}
, or

{
2
2

}
modulo 4. We need to show that whichever color we have, we can “complete”
this to a primary variable of color

(
1
0

)
.

If v1 + v2 has coefficient
{

0
0

}
modulo 4, then consider the variables with

coefficient
{∗

0

}
modulo 4. By the pigeonhole principle, there must be two for

which the asterisk represents the same number modulo 4. Adding these two
variables to v1 +v2 yields a primary variable at level 1 of color

(
1
0

)
. If v1 +v2

has coefficient
{

2
0

}
modulo 4, then we have two possibilities. Consider the

variables of coefficient
{∗

0

}
modulo 4. If we have two of these where the as-

terisk represents different residues modulo 4, then adding these two variables
to v1 + v2 yields a primary variable at level 1 of color

(
1
0

)
. Otherwise, we

add four variables of coefficient
{∗

0

}
to v1 + v2, and this will give the desired

primary variable at level 1.
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If v1 + v2 has coefficient
{

0
2

}
modulo 4, then we again have two possibil-

ities. If we can find two variables at level 0 with coefficients
{∗

0

}
and

{∗
2

}
modulo 4, where the asterisks represent the same residue, then we add these
variables to v1 + v2 to obtain the desired primary variable. If not, then we
instead add to v1 + v2 three variables of coefficient

{∗
0

}
and one with coeffi-

cient
{∗

2

}
, and we are finished (note that the asterisks in

{∗
0

}
all represent

the same residue, and that this is a different residue than the asterisk in{∗
2

}
). Finally, if v1 + v2 has coefficient

{
2
2

}
modulo 4, then we have two

possibilities. If there exist two variables at level 0 with coefficients
{∗

0

}
and{∗

2

}
modulo 4, where the asterisks represent different residues, then adding

these variables to v1 + v2 produces the primary variable we want. Otherwise,
adding three variables with coefficient

{∗
0

}
and one with coefficient

{∗
2

}
to

v1 + v2 will yield the desired variable.

Note that in order to make this variable, we use two variables from q0
and at most four variables from I0. Hence after constructing this variable,
we have q′0 = 5 and m′0 ≥ 13. Then Lemma 4 gives π′1 ≥ 2, although we
cannot control the colors of these variables. So we now have three primary
variables at level 1, at least one of which has color

(
1
0

)
.

If it happens that m1 ≥ 2 and m2 6= 0, then we can add a primary and a
secondary variable at level 1 of color

(
1
0

)
to produce a primary variable at level

2, leaving us with two primary variables and one secondary variable at level
1, which can be used to form a primary variable at level 2 by Proposition 8.
Then Proposition 8 again allows us to construct a primary variable at level 3.

If instead we have m1 ≥ 2 and m2 = 0, then we have two possibilities.
If m1 ≥ 4, then we can use two secondary variables at level 1 to create a
secondary variable at level 2. After doing this, we have m′1 ≥ 2 and m′2 6= 0,
and thus we are finished by the above case. If m1 ≤ 3, then we must have
m0 ≥ 28 and I0 ≥ 21 by Lemma 2, and after creating the three new primary
variables, we have I ′0 ≥ 13. Thus we may use Proposition 11 to create four
secondary variables at level 1 of color

(
1
0

)
. This puts us back in the first case

of this paragraph, and so the desired variable can be constructed.

If we have m1 = 1, then we must also have m2 ≥ 1. Using the ideas
above, we can create an additional secondary variable at level 1. After doing
this, we have m′1 ≥ 2 and m′2 6= 0, returning us to a case that we have
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already dealt with. Finally, if we have m1 = 0, then we again must have
m2 6= 0. Again, the ideas above allow us to use variables at level 0 to create
two secondary variables at level 1, returning us to the case where m′1 ≥ 2 and
m′2 6= 0. Thus in either of these two final cases we can construct a primary
variable at level 3, as desired. �

Lemma 21. Suppose that m1 +m2 ≥ 2, that the majority color at level 0 is(
1
0

)
(again, this being implicit in Lemma 2), and that the variables at level 1

are not of color
(
1
0

)
. Then we can construct a primary variable at level 3.

Proof. By Lemma 20, we may assume that m1 ≥ 1. Without loss of gen-
erality, assume that these variables have color

(
0
1

)
. Using Proposition 11, we

may use the variables at level 0 of color
(
1
0

)
to construct four secondary vari-

ables at level 1 of color
(
1
0

)
. After doing this, we have m′0 ≥ 11 and q′0 = 7.

By Lemma 4, we can construct three primary variables at level 1. Hence, we
now have at level 1 three primary variables, four secondary variables of color(
1
0

)
and m1 secondary variables of color

(
0
1

)
.

If m1 ≥ 3, then we can clearly construct three primary variables at level
2, and then use these to construct a primary variable at level 3. If m1 = 2,
then if we have any primary variables of color

(
1
0

)
, then it is easy to see that

we can construct three primary variables at level 2. If none of the primary
variables have this color, then by Proposition 10 we can use two of the sec-
ondary variables of color

(
1
0

)
to construct a secondary variable at level 2.

Then at level 1 there remain two secondary variables of color
(
1
0

)
and two

of color
(
0
1

)
, and it is easy to see that we can then construct two primary

variables at level 2. Thus yet another appeal to Proposition 8 allows us to
construct a primary variable at level 3.

Finally, if m1 = 1, note that we must have m2 6= 0. If the three primary
variables all have different colors, then we can add a primary and a secondary
variable of color

(
1
0

)
, and a primary and a secondary variable of color

(
0
1

)
,

to produce two primary variables at level 2. Then the variables at level 2
yield a primary variable at level 3 by Proposition 8. If two of the primary
variables have the same color, then adding these variables together produces
a primary variable at level 2. Then we have still a primary variable and
two secondary variables of different colors at level 1, and by Proposition 9,
these yield a primary variable at level 2. Then we again have two primary
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variables and one secondary variable at level 2, and Proposition 8 yields a
primary variable at level 3. �

The preceding lemmas show that no matter what the configuration of
variables at levels 0, 1, and 2 looks like, we are always able to construct a
primary variable at level 3. As mentioned in the remarks after Lemma 3,
this shows that we can always find a 2-adic solution of the system. Thus the
p = 2 case of the theorem is complete.

4. 3-Adic Solubility

Finally, in this section we will show that the pair of forms (1) has solu-
tions in Q3. According to the remarks following Lemma 3, we can prove that
the system (1) has a nontrivial solution in Q3 if we can construct a primary
variable at level 2. We first state a few preliminary propositions which will
help us to accomplish this. In all of these propositions, it is assumed that
p = 3 and that we are working 3-adically. In these propositions, if we work
with the coefficient vector of a variable, then unless otherwise stated we mean
the coefficients of fl and gl (as in Lemma 2), considered modulo 3.

Proposition 22. Suppose that we have at level l three primary variables,
and also two secondary variables which do not sum to zero (note that two
variables of different colors satisfy this condition). Then we can construct a
primary variable at level l + 1.

Proof. Since we have a total of 5 variables, Lemma 5 tells us that some
combination of these variables add to zero. However, because the two sec-
ondary variables do not sum to zero, the zero-sum must include a primary
variable. Thus the variable obtained through the construction is primary. �

Proposition 23. Suppose that we can find a sequence of three nonzero el-
ements at level l which have no zero-sum subsequences. If we then add two
primary variables to this sequence, then we can construct a primary variable
at level l + 1.

Proof. After adding the two primary variables, we have a sequence of five
variables at level l. By Lemma 5, there is a zero-sum subsequence, and
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hence we can construct a variable at level at least l + 1. Since the original
three variables have no zero-sum subsequences, the subsequence we have
constructed must use at least one of the primary variables. Thus the variable
we have constructed is primary. �

Proposition 24. Suppose that we have a sequence of four variables at the
same level. If this sequence contains variables of at least three different colors,
then we can find a subsequence which has three variables and has no zero-sum
subsequences.

Proof. Suppose first that the sequence contains one variable of each color.
For the first two elements of our subsequence, choose the variables of colors(
1
0

)
and

(
0
1

)
. Adding these variables together produces a variable of either

color
(
1
1

)
or
(
2
1

)
. For the third element of our subsequence, choose the vari-

able of whichever color is not the color of this sum.

Now suppose that the sequence contains only three colors. Without loss of
generality, suppose that there are two elements of color

(
1
0

)
and one element

each of colors
(
0
1

)
and

(
1
1

)
. If the elements of color

(
1
0

)
have the same

coefficients, then they do not sum to zero. In this case, choose these two
elements and either one of the other elements for the subsequence. If the
two elements of color

(
1
0

)
have different coefficients, then for the first two

elements of the subsequence, choose the elements of the other two colors.
Then there is at most one choice of element of color

(
1
0

)
which would make

all three elements of the subsequence sum to zero, and so we choose the other
element to complete our subsequence. �

Proposition 25. Suppose that we have a sequence of four elements at the
same level, and that this sequence contains variables of exactly two colors.
Then either there is a 3-element subsequence containing no zero-sums, or
else if we add one new element to the sequence then we can make a zero-sum
using that element.

Proof. Without loss of generality, we may suppose that the colors of the
variables are

(
1
0

)
and

(
0
1

)
, and that there are at least as many elements of

color
(
1
0

)
as color

(
0
1

)
. If there are three elements of color

(
1
0

)
, then we can

choose two of them having equal coefficient vectors, and these do not sum to
zero. To these two elements, we add any element of color

(
0
1

)
and obtain the
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desired subsequence.

Otherwise, there are two elements of each color. If either color has two
elements with the same coefficient vector, then we can use those two elements
and one element of the other color for our subsequence. Otherwise, both
colors have two elements with different coefficient vectors, and hence the
coefficient vectors in our sequence are exactly

{
1
0

}
,
{

2
0

}
,
{

0
1

}
,
{

0
2

}
. Clearly,

if we add any element to this sequence, then we can add to that element at
most two of the original four to make a zero-sum. �

Proposition 26. Suppose that we have at least four secondary variables at
level l, and that ql ≥ 1. If we can make two primary variables at level l, then
we can construct a primary variable at level l + 1.

Proof. Since q1 ≥ 1, there are at least two colors of secondary variables at
level 1. Thus, Propositions 24 and 25 say that we can either find a set of
three secondary variables which have no zero-sums, or else if we add any new
variable to this set, then we can make a zero-sum using that new variable. In
the first case, Proposition 23 provides us with the primary variable we seek.
In the second case, we simply use one of the primary variables as the “new
variable”, and form our sum. �

Proposition 27. Suppose that we have five vectors at level zero whose co-
efficients have the form

{∗
9

}
(mod 9), where the asterisk can represent any

number that is nonzero modulo 3, and could have different values for different
vectors. Then we can construct a variable having color

(
1
0

)
at level exactly

1, and this construction uses at most three of the vectors.

Proof. In this proof, all coefficient vectors are to be interpreted modulo 9.
Without loss of generality, we may assume that the coefficient vector that
appears the most is

{
1
9

}
. If this vector appears at least three times, then we

have {
1

9

}
+

{
1

9

}
+

{
1

9

}
= 3

{
1

9

}
,

which has color
(
1
0

)
at level 1.

Suppose now that the coefficient vector
{

1
9

}
appears exactly twice. If any

of the other coefficient vectors are
{

2
9

}
,
{

4
9

}
, or

{
5
9

}
, then we can easily con-

struct the desired vector using at most three of the vectors at level 0. Since
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no coefficient vector appears more than twice, both the coefficient vectors{
7
9

}
and

{
8
9

}
must appear, and then the sum

{
7
9

}
+
{

8
9

}
= 3

{
5
6

}
has the

desired property.

Finally, suppose that
{

1
9

}
appears exactly once. In this case, no coefficient

vector appears more than once. By the pigeonhole principle, at least one of{
2
9

}
and

{
5
9

}
must be among our vectors. Adding this vector to

{
1
9

}
yields

a vector of color
(
1
0

)
at level 1. �

Proposition 28. Suppose that we have four vectors at level 0 of the form{∗
9

}
modulo 9, and one additional vector at level 0 which is not of this form,

but still has color
(
1
0

)
. Then we can use at most three of these variables to

construct a vector at level 1 which does not have color
(
0
1

)
.

Proof. Again, in this proof all coefficient vectors are to be interpreted mod-
ulo 9. Without loss of generality, we may assume that the coefficient vector
of the form

{∗
9

}
which appears the most is

{
1
9

}
. Following the proof of

Proposition 27 and keeping in mind that both of the sums{
7

9

}
+

{
8

9

}
and

{
1

9

}
+

{
7

9

}
+

{
7

9

}
produce variables at level 1 of color

(
1
0

)
, we see that the only way to have four

vectors of the form
{∗

9

}
and not have any zero-sums which yield a variable of

color
(
1
0

)
at level 1 is if the four vectors are

{
1
9

}
,
{

1
9

}
,
{

8
9

}
,
{

8
9

}
. It is now

easy to check that if we add any vector of the form
{∗

3

}
or
{∗

6

}
to these four,

then it is possible to use at most three of the vectors to produce a vector at
level 1 that does not have color

(
0
1

)
. �

Proposition 29. Suppose that we have two variables at level 0 of the form{∗
9

}
modulo 9, and also one variable of color

(
1
0

)
which is not of this form.

Then we can construct a variable at level 1 which does not have color
(
1
0

)
.

Proof. A variable which has color
(
1
0

)
but does not have the form

{∗
9

}
must have coefficients either

{∗
3

}
or
{∗

6

}
modulo 9. Since we have three

variables of the same color, we know by Lemma 6 that there exists a zero
sum which includes this variable. Since the bottom coefficient of this variable
is not divisible by 9, then the bottom coefficient of the zero-sum will not be
divisible by 9, and hence the zero-sum will have a color (at level 1) different
than

(
1
0

)
. �
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Now we are ready to prove that the system (1) has nontrivial 3-adic
solutions. As before, we assume that the forms in (1) are 3-normalized. By
Lemma 2, we may now assume that

m0 ≥ 13

q0 ≥ 7

m0 +m1 ≥ 25

m0 + q1 ≥ 19.

Also, if we define t to be the number of variables at level 1 with coefficient{∗
9

}
(mod 9), then Lemma 2 gives us (since t is an integer)

m0 + u(g1)− 13 ≥ t ≥ i0
3
.

By Lemma 4, we have

π1 ≥ min
{⌊m0

5

⌋
,
⌊q0

3

⌋}
.

We now prove that 3-adic solutions exist through a series of lemmas. In
our first three lemmas, we show that all systems with q0 ≥ 11 have 3-adic
solutions. Note that in this case the majority color at level 0 must have at
least 4 variables, and so m0 ≥ 15.

Lemma 30. If q0 ≥ 11 and either q1 6= 0 or m1 ≥ 3, then we can construct
a primary variable at level 2.

Proof. If q1 6= 0, then there exist secondary variables of at least two colors
at level 1. Since m0 ≥ 15 and q0 ≥ 11, Lemma 4 yields at least three pri-
mary variables at level 1. Proposition 22 now shows that we can construct a
primary variable at level 2.

If q1 = 0, then m1 ≥ 3. In this case, all of the variables at level 1 have the
same color. Since there are three of them, we can choose two which have the
same coefficients. These variables do not sum to zero. Since we have three
primary variables, Proposition 22 now yields a primary variable at level 2.�

Lemma 31. If q0 ≥ 12, q1 = 0 and m1 ≤ 2, then we can construct a primary
variable at level 2.
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Proof. If 1 ≤ m1 ≤ 2, then Lemma 2 gives m0 ≥ 23, and so Lemma 4
implies π1 ≥ 4. These primary variables, along with one secondary variable,
together have a zero-sum. Clearly this zero-sum must involve a primary vari-
able, and hence produces a primary variable.

If m1 = 0, then Lemma 2 yields m0 ≥ 25. If it happens that q0 ≥ 15, then
Lemma 4 gives π1 ≥ 5. These variables have a zero-sum, which is primary.
Hence we may assume that 12 ≤ q0 ≤ 14, whence i0 ≥ 11. Now, if there are
two different colors with the property that we can make a zero-sum modulo
9 using only variables of that color, then we can construct a primary variable
at level 2. Hence by Lemma 7, there can be at most one color with more
than 8 variables, and so i1, i2, i3 ≤ 8. Now, by Lemma 6 we can use at most
three of the variables of color

(
1
0

)
to make a secondary variable at level 1.

Then we have m′0 ≥ 22 and i′0 ≥ 8. Since no other color has more than 8
variables, this does not change q0, and we must have q′0 ≥ 12. Then Lemma 4
guarantees that π1 ≥ 4. The five variables at level 1 have a zero-sum, which
must include a primary variable. Thus the constructed variable is primary.
�

Lemma 32. If q0 = 11, q1 = 0 and m1 ≤ 2, then we can construct a primary
variable at level 2.

Proof. If 1 ≤ m1 ≤ 2, then m0 ≥ 23 and i0 ≥ 12. We know that the
variables at level 1 have the same color. If this color is

(
1
0

)
, then we have

u(g1) = 0, and hence we know that 4 ≤ t ≤ m0 − 13. Since there are only
11 variables not of color

(
1
0

)
, we know that there is a variable of color

(
1
0

)
which does not have coefficient

{∗
9

}
. Then Proposition 29 allows us to make

a secondary variable at level 1 which does not have color
(
1
0

)
. After con-

structing this variable, we have m′0 ≥ 20, i′0 ≥ 9. As in the previous lemma,(
1
0

)
must be the only color at level 0 with more than 8 variables, and hence it

is still the maximal color. Thus we obtain q′0 = 11 and π′1 ≥ 3. Thus we now
have three primary variables at level 1, along with two secondary variables
of different colors. By Proposition 22, we can construct a primary variable
at level 2.

If the variables at level 1 do not have color
(
1
0

)
, then we may assume

without loss of generality that these variables have color
(
0
1

)
. If t ≥ 5, then

Proposition 27 allows us to construct a secondary variable of color
(
1
0

)
at
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level 1. If t = 4, then there exist variables of color
(
1
0

)
at level 0 which do

not have the form
{∗

9

}
. In this case, Proposition 28 allows us to construct a

secondary variable at level 1 which does not have color
(
0
1

)
. Either way, we

can use at most three variables from level 0 to ensure that level 1 contains
secondary variables of two different colors. After this construction, we have
m′0 ≥ 20 and i′0 ≥ 9. As in the previous paragraph, we have q′0 = 11 and
hence π′1 ≥ 3, whence we can construct a primary variable at level 2.

Finally, if m1 = 0, then we have m0 ≥ 25, i0 ≥ 14, and 5 ≤ t ≤ m0 − 13.
Again, there must be at least one variable of color

(
1
0

)
which does not have

coefficient
{∗

9

}
modulo 9. Hence we may use Propositions 27 and 29 to

construct two secondary variables of different colors at level 1. Since this
construction uses at most six variables, all of color

(
1
0

)
, we have m′0 ≥ 19

and i′0 ≥ 8. Hence
(
1
0

)
is still the maximal color, and so q′0 = q0 = 11. Then

Lemma 4 says that π1 ≥ 3. Combining these primary variables with the
secondary variables we have constructed, an appeal to Proposition 22 gives
a primary variable at level 2. �

Lemma 33. If 9 ≤ q0 ≤ 10 and m1 ≥ 3, then we can construct a primary
variable at level 2.

Proof. If 3 ≤ m1 ≤ 10, then we have m0 ≥ 15, and hence Lemma 4 yields
π1 ≥ 3. Since m1 ≥ 3, we can choose two secondary variables at level 1 which
do not sum to zero. By Proposition 22, we can contract our variables to a
primary variable at level 2.

If m1 ≥ 11 and m0 ≥ 15, then we again have π1 ≥ 3. Since we still have
m1 ≥ 3, the same proof as above yields a primary variable at level 2. If
m1 ≥ 11 and 13 ≤ m0 ≤ 14, then Lemma 4 yields two primary variables at
level 1. Since m0 + q1 ≥ 19, we know that q1 ≥ 5. Since m1 ≥ 4 and q1 ≥ 1,
Proposition 26 guarantees that we can form the primary variable we seek.�

Lemma 34. If 9 ≤ q0 ≤ 10 and m1 ≤ 2, then we can construct a primary
variable at level 2.

Proof. We treat each possible value of m1 separately. If m1 = 2, then we
must have m0 ≥ 23, i0 ≥ 13, and t ≥ 5. By Proposition 27 we can make a
secondary variable at level 1 of color

(
1
0

)
using at most three of the variables
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from i0. Since there are now three secondary variables at level 1, we may
choose two of them which do not sum to zero. We now have m′0 ≥ 20 and
i′0 ≥ 10. This implies that we have 9 ≤ q′0 ≤ 10, which yields π′1 ≥ 3. These
primary variables, combined with the two that we chose earlier, satisfy the
conditions of Proposition 22, and so we may construct a primary variable at
level 2.

If m1 = 1, then m0 ≥ 24 and i0 ≥ 14. This, along with Lemma 2, yields
5 ≤ t ≤ m0−12. Since q0 ≤ 10, there must be at least one variable at level 0
of color

(
1
0

)
which does not have coefficient

{∗
9

}
modulo 9. Hence by either

Proposition 27 or 29, we may use at most three variables from i0 to construct
a secondary variable at level 1, and can arrange so that it has a different
color than the variable already there. We now have m′0 ≥ 21 and i′0 ≥ 11,
and so we have 9 ≤ q′0 ≤ 10 and π′1 ≥ 3. As before, Proposition 22 now gives
us the primary variable we seek.

If m1 = 0, then m0 ≥ 25 and i0 ≥ 15. Moreover, we have 5 ≤ t ≤ m0−13.
As above, since q0 ≤ 10, we have variables at level 0 of color

(
1
0

)
which do not

have the form
{∗

9

}
modulo 9. By Propositions 27 and 29, we can construct

two secondary variables of different colors at level 1. We now have m′0 ≥ 19
and i′0 ≥ 9. If

(
1
0

)
is still the largest color at level 0, then we have q′0 = q0 ≥ 9.

If
(
1
0

)
is no longer the largest color, then having i′0 ≥ 9 implies that we still

have q′0 ≥ 9. In either case, Lemma 4 guarantees that we have π′1 ≥ 3. Once
again, an appeal to Proposition 22 completes the proof. �

Lemma 35. If 7 ≤ q0 ≤ 8 and m1 ≥ 3, then we can construct a primary
variable at level 2.

Proof. We divide the proof of this lemma into several cases.

Case A: m1 ≥ 4 and q1 ≥ 1. Since m0 ≥ 13 and q0 ≥ 7, we have π1 ≥ 2.
Hence we are able to construct at least two primary variables at level at least
1, and Proposition 26 yields a primary variable at level 2.

Case B: m1 ≥ 5 and q1 = 0. Since q1 = 0, we must have m0 ≥ 19, and hence
i0 ≥ 11. There are two cases to consider. If the variables at level 1 have color(
1
0

)
, then we have u(g1) = 0. In this case, Lemma 4 gives 4 ≤ t ≤ m0 − 13.

Since q0 ≤ 8, there are at least five variables of color
(
1
0

)
which do not have
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coefficient
{∗

9

}
modulo 9. Consider one of these variables and two variables

of the form
{∗

9

}
modulo 9. By Proposition 29, we can construct a secondary

variable at level 1 which does not have color
(
1
0

)
. Next, since there are at

least three variables at level 1 of color
(
1
0

)
, we may choose two of them which

have the same coefficients modulo 3. These two variables, combined with
the variable we just constructed, are three variables with no zero-sums. At
this point, we have m′0 ≥ 16 and i′0 ≥ 8. Thus we have q′0 ≥ 8 and therefore
π′1 ≥ 2. With two primary variables at level 1, Proposition 23 completes the
proof.

Instead, suppose that the variables at level 1 have a color other than
(
1
0

)
.

Without loss of generality, we may assume that this color is
(
0
1

)
. Again,

we may find two variables of color
(
0
1

)
which have the same coefficients. If

t ≥ 5, then by Proposition 27 we can use three variables with coefficients{∗
9

}
modulo 9 to create a secondary variable at level 2 with color

(
1
0

)
. If

t = 4, then since i0 ≥ 11 we have a variable at level 0 of color
(
1
0

)
which

does not have the form
{∗

9

}
. Then by Proposition 28 we can construct a

variable at level 1 of color other than
(
0
1

)
. Either way, we obtain a set of

three secondary variables at level 1 with no zero-sums. After constructing
this secondary variable, we have m′0 ≥ 16 and i′0 ≥ 8. This again implies
that q′0 = q0, and hence that π′1 ≥ 2. Thus we may construct two primary
variables at level 1, and Proposition 23 completes the proof of this case.

Case C: 3 ≤ m1 ≤ 4 and q1 = 0. As before, we can find two variables at
level 1 which have equal coefficients. Moreover, by Lemmas 2 and 4, we have
m0 ≥ 21, i0 ≥ 13, and m0 +u(g1)− 13 ≥ t ≥ 5. We again split the proof into
cases based on the color of the variables at level 1. If these variables have
color

(
1
0

)
, then t ≤ m0 − 13. Therefore there are at least five variables at

level 0 of color
(
1
0

)
which do not have coefficient

{∗
9

}
modulo 9. Since we also

have at least two variables at level 0 which do have this form, Proposition
29 allows us to construct a secondary variable at level 1 which does not have
color

(
1
0

)
. We now have three secondary variables at level 1 which have no

zero-sums. Moreover, we now have m′0 ≥ 18, i′0 ≥ 10, and q′0 = q0 ≥ 7, and
hence π′1 ≥ 2. After we construct two primary variables at level 1, Proposi-
tion 23 yields a primary variable at level 2.

On the other hand, if the variables at level 1 have a different color, then

27



without loss of generality we may assume that this color is
(
0
1

)
. Again, we

may choose two of these variables which have equal coefficients modulo 9.
Since t ≥ 5, Proposition 27 allows us to construct a secondary variable of
color

(
1
0

)
at level 1. Then the three secondary variables at level 1 have no

zero-sums. After this construction, we still have π′1 ≥ 2 as before, and so
Proposition 23 again yields the primary variable we seek.

Case D: m1 = 3 and q1 ≥ 1. Suppose first that there exist exactly two
colors of variables at level 1. If there is a color which has two variables with
equal coefficients modulo 3, then we are finished as in previous cases. So
suppose that the two variables of the same color have different coefficients.
We have m0 ≥ 22 and i0 ≥ 14, and t ≥ 5. By Proposition 27, we can con-
struct a variable at level 1 of color

(
1
0

)
. If the secondary variables of the same

color also have color
(
1
0

)
, then we can now choose two secondary variables of

color
(
1
0

)
which do not sum to zero, and one secondary variable of a different

color to obtain a trio of secondary variables with no zero-sums. As before, we
still have π′1 ≥ 2, and so Proposition 23 gives us the primary variable we want.

If the third variable at level 1 has color
(
1
0

)
, then our construction yields

another secondary variable of color
(
1
0

)
. If these variables have equal coef-

ficients, then we are finished as in previous cases. If they have different co-
efficients, then any three of the variables at level 1 have a zero-sum. Hence,
Proposition 25 tells us that if we can make a single primary variable at level
1, then we can use that variable in a zero-sum to produce a primary variable
at level at least 2. Since we still have π′1 ≥ 2, we are finished in this case.
Finally, suppose that none of the variables at level 1 have color

(
1
0

)
. Then

after our construction, we have secondary variables of three different colors at
level 1 and π′1 ≥ 2. Then Propositions 24 and 23 provide a primary variable
at level 2.

There remains the possibility that the variables counted by m1 represent
three different colors. In this case, since t ≥ 5, we can make a secondary
variable at level 1 of color

(
1
0

)
. After doing this we will have four secondary

variables at level 1, and hence by Proposition 24, we can find three of them
which have no zero-sums. After creating this variable, we still have π′1 ≥ 2,
and so Proposition 23 provides a primary variable at level 2. This completes
the proof of the lemma. �
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Lemma 36. If 7 ≤ q0 ≤ 8 and m1 ≤ 2, then we can construct a primary
variable at level 2.

Proof. In this proof, we treat each possible value of m1 separately. If
m1 = 2, then we have m0 ≥ 23, i0 ≥ 15, and 5 ≤ t ≤ m0 − 11. Using
Propositions 27 and 29, we can create two secondary variables at level 1 of
different colors. After creating these variables, we have m′1 ≥ 4, q′1 ≥ 1 and
π′1 ≥ 2. Then Proposition 26 allows us to create the primary variable we
want.

If m1 = 1, then m0 ≥ 24, i0 ≥ 16, and 6 ≤ t ≤ m0− 12. As above, we can
construct two secondary variables at level 1 of different colors. After doing
this, we still have at least 10 variables at level 0 which have color

(
1
0

)
, and by

Lemma 6, we can use at most three of these to construct another secondary
variable at level 1. This gives us a total of four secondary variables at level 1.
After these constructions, we have q′1 ≥ 1, m′0 ≥ 15, i′0 ≥ 7, and q′0 ≥ 7 (note
that we might have q0 = 8 and q′0 = 7), and hence π′1 ≥ 2. Then Proposition
26 allows us to construct a primary variable at level 2.

Finally, if m1 = 0, then m0 ≥ 25, i0 ≥ 17, and 6 ≤ t ≤ m0 − 13. As in
previous cases we construct two secondary variables at level 1, one of color(
1
0

)
and one not of this color. After this, we still have at least 11 variables at

level 0 of color
(
1
0

)
, and hence by Lemma 6 we can use these to create three

more secondary variables at level 1. Of the five secondary variables we have
constructed, we wish to select 3 of them which have no zero-sums. If the five
variables represent at least three colors, then Proposition 24 allows us to do
this. If the variables represent exactly two colors, then some three of them
have the same color, and two of these have the same coefficients. These two
variables, along with one variable of the other color, are a collection of three
variables with no zero-sums.

We now deconstruct the two variables that we have not selected, returning
their component parts to level 0. After this, we have constructed a total of
three variables at level 1, using at most 9 variables from level 0, all of color(
1
0

)
. Hence we have m′0 ≥ 16, i′0 ≥ 8, q′0 = q0, and hence π′1 ≥ 2. Thus

Proposition 23 allows us to construct a primary variable at level 2. Since
this is the final case, this completes the proof of the lemma. �
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Finally, we point out that since we know from normalization that q0 ≥ 7,
these lemmas complete the proof of the theorem.
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